GENERALIZED LOCAL COHOMOLOGY AND THE INTERSECTION THEOREM
نویسندگان
چکیده
منابع مشابه
A Duality Theorem for Generalized Local Cohomology
We prove a duality theorem for graded algebras over a field that implies several known duality results: graded local duality, versions of Serre duality for local cohomology and of Suzuki duality for generalized local cohomology, and Herzog-Rahimi bigraded duality.
متن کاملTame Loci of Generalized Local Cohomology Modules
Let $M$ and $N$ be two finitely generated graded modules over a standard graded Noetherian ring $R=bigoplus_{ngeq 0} R_n$. In this paper we show that if $R_{0}$ is semi-local of dimension $leq 2$ then, the set $hbox{Ass}_{R_{0}}Big(H^{i}_{R_{+}}(M,N)_{n}Big)$ is asymptotically stable for $nrightarrow -infty$ in some special cases. Also, we study the torsion-freeness of graded generalized local ...
متن کاملExtension functors of generalized local cohomology modules and Serre subcategories
In this paper we present several results concerning the cofiniteness of generalized local cohomology modules.
متن کاملUPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES
Let $R$ be a commutative Noetherian ring with non-zero identity and $fa$ an ideal of $R$. Let $M$ be a finite $R$--module of finite projective dimension and $N$ an arbitrary finite $R$--module. We characterize the membership of the generalized local cohomology modules $lc^{i}_{fa}(M,N)$ in certain Serre subcategories of the category of modules from upper bounds. We define and study the properti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Algebra
سال: 2005
ISSN: 0092-7872,1532-4125
DOI: 10.1081/agb-200051162